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Abstract: - This paper presents the design and implementation of an adaptive filter using the state-of-the-art Xilinx 
Vivado software/hardware co-design concepts and tools. A desired signal corrupted by the environment can often be 
recovered by an adaptive noise canceller using the least mean squares (LMS) algorithm. The detailed structure of the 
adaptive noise cancellation system is illustrated. The adaptive parameters of the least-mean-square based adaptive 
filter system are obtained using the MATLAB/Simulink model. RTL design is generated by converting LMS design 
in Simulink to an Intellectual Property (IP) Core using HDL Coder Support. A complete system of Filter based on 
Zynq board target architecture is designed using Vivado Synthesis Design and VHDL target language. The IP Core is 
adopted in Vivado Synthesis and implementation. Finally, the debugger is run before the audio file was fed in 
Zedboard development board for test. Experimental results show that the proposed hardware implementation method 
has a high degree of noise cancellation performance. 

Key-Words: - FPGA, Software/hardware implementation, Least mean square, Adaptive filters, Adaptive noise 
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1 Introduction 
In the last decades, adaptive filter design has been a very 
active area of research and innovative FPGA 
implementations [1][2]. Adaptive filters are neural 
network based filters that can self-adjust its coefficients 
based on some optimizing algorithms. Adaptive filters 
have numerous important real-world applications in a 
wide range of signal processing, control, and 
communications fields including: 1) signal detection; 2) 
echo cancellation; 3) noise cancellation and/or 
suppression; 3) channel equalization; 4) system 
identification and inverse modeling of unknown systems; 
5) forward and backward predictions and adaptive 
tracking; and 6) spectral analysis.  

Among these applications, the FPGA hardware 
implementations are extremely important whenever real-
time parallel processing is needed [3]. State-of-the-Art 
VLSI fabrication technology has made the field-
programmable gate arrays (FPGA) the platform of 
hardware implementations, especially when timing 
requirement is very strict. Such hardware 
implementations can be realized using hardware 
description languages such as VHDL or Verilog.  

 
 

Modern FPGA chip design contains numerous resources 
that are essential for digital signal processing 
applications such as embedded multipliers, multiply-
accumulate units, soft and hard processor cores, and 
embedded memory blocks [4]. The powerful integration 
of available hybrid software and hardware co-design and 
synthesis packages, advanced FPGA boards, Intellectual 
property (IP) designs, and tools that allow seamless 
integration between these software and hardware design 
packages has made FPGA software/hardware co-design 
a methodology of choice for many real-time applications. 
Therefore, it is imperative to design and implement a 
self-adjusting noise cancellation system based on the 
Vivado software and FPGA co-design.  

The rest of the paper is organized as follows. In 
Section 2, the problem formulation and the neural 
network model are discussed where an overview of the 
least mean square (LMS) algorithm is given and the 
implementation of the design in the FPGA Zynq 
evaluation kit is described. In Section 3, the details of 
the software/hardware codesign are discussed in detail. 
Experimental results are given in Section 4. Finally, the 
paper is concluded in Section 5. 
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2 Different Neural Network Models for 
Adaptive Noise Cancellation Problem  
The most commonly-used algorithm to design an 
adaptive filter is the least mean square (LMS) algorithm, 
originally developed by Widrow and Hoff [5]. The LMS 
algorithm is based on the principle of the steepest 
descent algorithm with minimum mean square error. The 
most important benefit of the LMS algorithm is that it 
does not require exact measurements of the gradient 
vector, nor does it require matrix inversion. The LMS 
algorithm is used to solve the Wiener-Hoff equation by 
searching for the optimal coefficients’ weights for an 
adaptive filter. Another main advantage of the LMS 
algorithm is its computational simplicity, ease of 
implementation, and unbiased convergence. A block 
diagram of an adaptive noise cancellation system is 
shown in Fig. 1. 

 
Fig. 1. Block diagram of a typical adaptive noise 

cancellation system 
 
The vector 𝑋𝑋(𝑘𝑘) denotes an input vector with time 

delay and 𝑥𝑥(𝑘𝑘)  is the input value at time 𝑘𝑘, i.e.: 
𝑋𝑋(𝑘𝑘) = [𝑥𝑥(𝑘𝑘)  𝑥𝑥(𝑘𝑘 − 1) … 𝑥𝑥(𝑘𝑘 − 𝑁𝑁 + 1)]𝑇𝑇                (1) 

Where [ ]𝑇𝑇  denotes the transpose operation. The 
vector 𝑊𝑊(𝑘𝑘) is used to represent the weights applied to 
the filter coefficients at at time 𝑘𝑘 and is given as  
𝑊𝑊(𝑘𝑘) = [𝑊𝑊0(𝑘𝑘) 𝑊𝑊1(𝑘𝑘)  … 𝑊𝑊𝑁𝑁−1(𝑘𝑘) ]𝑇𝑇                     (2) 

 
In Fig. 1, the step size parameter 𝜇𝜇 is the step size of 

the adaptive filter ,  and𝑒𝑒(𝑘𝑘)  is the error between the 
desired response 𝑑𝑑(𝑘𝑘) and the output of the filter 𝑦𝑦(𝑘𝑘), 
i.e., the filtered signal, at time 𝑘𝑘. 

 The pseudo code of an LMS algorithm is described 
in Table 1. The algorithm is adopted to update the 
coefficients of a finite impulse response (FIR) filter. 

 
Table 1 The pseudo code of an LMS algorithm 

1. Calculate the output signal y(k) of the FIR filter. The 
output of the filter represents an estimate of the desired 
response. y(k) is the calculated as the convolution of the 
weight vector and the input vector: 
𝒚𝒚(𝒌𝒌) =  ∑ 𝑾𝑾𝒏𝒏(𝒌𝒌)𝒙𝒙(𝒌𝒌 − 𝒏𝒏) =  𝑾𝑾𝑻𝑻(𝒌𝒌)𝒙𝒙(𝒌𝒌)𝑵𝑵−𝟏𝟏

𝒏𝒏=𝟎𝟎         (3) 
2. The error signal e(k), is estimation error defined as the 
difference between the estimated response and the 

desired response. 
𝒆𝒆(𝒌𝒌) = 𝒅𝒅(𝒌𝒌) − 𝒚𝒚(𝒌𝒌)      (4) 

3. The error signal and the input signal are applied to the 
weight update algorithm to updates the filter 
coefficients. 

 
The LMS algorithm updates its coefficients through 

the minimization of the mean of the instantaneous 
squared error denoted by 𝐸𝐸[𝑒𝑒2(𝑘𝑘)] . While 𝑋𝑋(𝑘𝑘) 
and  𝑊𝑊(𝑘𝑘)  are assumed to be independent, the LMS 
algorithm assumes that 𝑥𝑥(𝑘𝑘)  and 𝑑𝑑(𝑘𝑘)  are wide-sense 
stationary ergodic processes, and therefore their means 
and variances are constant. The iterative weight update 
procedure of the LMS algorithm is given as: 

𝑊𝑊(𝑘𝑘 + 1) = 𝑊𝑊(𝑘𝑘) + 2𝜇𝜇𝑒𝑒(𝑘𝑘)𝑋𝑋(𝑘𝑘)        (5) 
The selection of the step size parameter𝜇𝜇  plays an 

important role in updating of the system coefficients and 
thus can affect the system performance. While a 
relatively small 𝜇𝜇  value could result in longer 
convergence time to find an optimal solution, selecting a 
larger 𝜇𝜇 value may lead to unstable convergence and an 
output that may diverge. For the consideration of stable 
behavior and convergence, the step size must be a small 
positive value (𝜇𝜇 << 1) and meet the following criteria 
0 < µ < 1

2∗𝑁𝑁∗𝑅𝑅
     (6) 

where 𝑁𝑁 is the number of filter taps and 𝑅𝑅 is the input 
signal covariance matrix defined as 
𝑅𝑅 = 𝐸𝐸(𝑋𝑋(𝑛𝑛) ∗ 𝑋𝑋𝑇𝑇(𝑛𝑛))    (7) 

 

3 FPGA Implementation  
In this section, we will first introduce the Zynq 
evaluation kit that we use to implement our design in 
Section 3.1, and then we discuss the implementation of 
an adaptive filter in detail in Section 3.2.  

3.1 Zynq Evaluation Kit 
The complete design will be implemented and exported 
to work with FPGA Zyn Evaluation Kit [6]. The 
software design using Simulink LMS Filter block is 
converted to an Intellectual Property (IP) Core, which is 
connected with a Zynq Processing system and 
communicates with the target interface platform AXI4-
Lite. AXI stands for Advanced eXtensible Interface, and 
the current version is AXI4. The AMBA standard was 
originally developed by ARM for use in 
microcontrollers [7]. AXI buses can be used flexibly, 
and in the general sense are used to connect the 
processor(s) and other IP blocks in an embedded system.  

AXI4-Lite provides a simplified link supporting only 
one data transfer per connection (no burst). It also is 
memory-mapped, where an address and single data word 
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are transferred. It means data is then written to, or read 
from, the specified address; in the case of AXI4 bursts, 
the address specified is for the first data word to be 
transferred, and the slave must then calculate the 
addresses for the data words that follow [8]. The AXI4-
Lite is the Target Interface, which is defined as point-to-
point connection for passing data, addresses, and hand-
shaking signals between master and slave clients within 
the system. The design flow for Zynq System on Chip 
(SoC) is illustrated in Fig. 2. 

 

 
Fig. 2. The design flow for Zynq System on Chip (SoC) 

 
All Zynq devices have the same basic architecture, 

and all of them contain, as the basis of the processing 
system, a dual-core ARM Cortex-A9 processor, as 
shown in Fig. 3. This is a ‘hard’ processor — it exists as 
a dedicated and optimized silicon element on the device.  

For comparison purposes, the alternative to a hard 
processor is a ‘soft’ processor like the Xilinx 
MicroBlaze, which is formed by combining elements of 
the programmable logic fabric. The implementation of a 
soft processor is therefore the equivalent of any other IP 
block deployed in the logic fabric of an FPGA. In 
general, the advantage of soft processors is that the 
number and precise implementation of processor 
instances is flexible.  
      These two processing styles are ideally suited to the 
PL and PS of Zynq, respectively. Zynq provides the 

greatest benefit to applications requiring both of these 
processing styles, particularly when implementation 
would otherwise require the use of two discrete 
processing chips Moreover, where the application 
involves close cooperation between these two processing 
elements, the consolidated Zynq architecture can permit 
power savings and design simplifications. The low-
latency and high-bandwidth link between the PS and PL 
is an advantage, and is particularly significant in systems 
with fast real-time processing requirements and 
feedback loops. 
 

Fig. 3. The Zynq processing system 
 

The powerful of Zynq ecosystem, together with IP 
blocks, operating systems, and other software solutions 
provides a distinct set of features and characteristics. It 
is therefore useful to build on these observations, and to 
explore and consider applications for which Zynq is 
particularly well-suited, as shown in Fig. 4. The Zynq 
architecture can be leveraged to meet the demands of 
applications with significant requirements in terms of 
both high performance computation, and sequential 
processor intensive functionality.  

Fig. 4. Embedded system application areas 
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3.2 FPGA Implementation 
The design and implementation of an adaptive filter 
involves multiple steps and processes before the design 
is completely exported and launched on Hardware 
(System debugger), as shown in Fig. 5a. Using both 
Simulink and Vivado Synthesis Design are the final 
option in Adaptive filter implementation due to the 
support between two platforms.  

 
 

 
 
Fig. 5a. Software\Hardware co-design of LMS adaptive 
filter 
 

A Software Development Kit (SDK) is launched to 
import necessary drivers and C++ files used for 
hardware implementation. Generally, the process 
involves the following steps. 

 
Step 1: Design Adaptive Filter LMS using Matlab 
Simulink DSP Toolbox with HDL Support blocks. Filter 
block has to be supported by HDL Coder that is able to 
convert to IP Core (lms_pcore), which later will be 
added into Vivado Synthesis Design Environment for 
Register Transfer Level design. 
 
Step 2: Give input samples and simulate the Simulink 
design. 
 
Step 3: Generate RTL design by converting LMS design 
in Simulink to an Intellectual Property (IP) Core using 
HDL Coder Support.  
 
Step 4: Target platform interface AXI4-Lite for signal 
𝑥𝑥(𝑘𝑘),𝑑𝑑(𝑘𝑘), d(k), and 𝑒𝑒(𝑘𝑘).  
 
Step 5: Design a complete system of Filter based on 
Zynq board target architecture using Vivado Synthesis 
Design and VHDL target language. A complete design 
of IPs core includes lms_pcore, switches and buttons IP 
core, processing system IP core, and AXI Interconnect 
altogether wired, synthesized, and implemented. 
 

Step 6: Synthesis, implement, and export the complete 
design into Hardware. 
 
Step 7: Launch Software Development Kit (SDK) to 
generate all drives, input C++ files, and input signal 
needed. 
 
Step 8: Run System Hardware Debugger to Zedboard, 
and run test.       
      

HDL Coder plays an important role in converting 
LMS Filter from Simulink design to an IP Core in 
Vivado Synthesis Design. HDL Coder is a built-in 
MathWorks product which enables the synthesizable 
HDL codes generation from MATLAB functions and 
Simulink models [9]. It provides a workflow which 
analyzes a MATLAB/Simulink model and then converts 
the floating point signals to fixed point signals. This 
benefits the users on the development of algorithms and 
models without lower-level HDL code design. The HDL 
code optimization will give the option of choosing the 
desired FPGA device so that it can provide specified 
control during the implementation, implementing data 
paths, controlling the HDL architecture, and generating 
hardware resource utilization. Once generated by HDL 
Coder, the HDL code can be used to create an IP core, as 
detailed In Fig 5b.  

 

 
 

Fig. 5b. HDL Coder Flow 
 

4 Experimental Results 
We implemented the FPGA design of the adaptive noise 
cancellation system based on the least mean square 
(LMS) algorithm based on the steps described in Section 
3. 

1. This design required the latest Simulink library to be 
properly installed. There exist many types of LMS 
filters, as shown in Fig. 6. In order to fit our design, 
the DSP System Toolbox HDL Support LMS Filter is 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 259 Volume 13, 2017



selected. Only this block will be later converted to an 
IP for synthesis design.  

 

Fig. 6. the LMS Block in Simulink Library 
 

LMS Filter is configurable to fit our design, and we 
assign signals 𝑥𝑥(𝑘𝑘), 𝑑𝑑(𝑘𝑘), and 𝑒𝑒(𝑘𝑘), to denote the input, 
the desired signal and the error signal, respectively, as 
shown in Fig. 7. In order for the HDL Coder to generate 
HDL codes for the Simulink LMS model, the input type 
must be a fixed-point number. Pair of DATA Type 
Conversion blocks converts the corrupt audio signals and 
the tonal noise signals to fixed-point signals. These 
fixed-point signals are then provided to the LMS 
subsystem. The error signal, e(k), along with the corrupt 
audio and tonal noise input are transmitted to a scope for 
visual inspection of the signal. Two blocks called To 
Workspace make the LMS output and the corrupt audio 
signals to be the MATLAB workspace variables for 
audio playback.  
 

 
 

Fig. 7. the LMS Subsystem with parameters chosen. 
Adaptive Filter coefficients = 16 and step size = 0.13 
 

This step size is then calculated following Eq. (6). 
The selection of the step size parameter µ plays an 
important role in updating of the system coefficients and 
thus has a major impact on the performance of the LMS 
algorithm. The smaller the µ, the longer it takes for the 

adaptive filter to converge to the optimal solution. The 
complete design in Simulink is shown in Fig. 8. 

 

 
Fig. 8. Complete Simulink design of the LMS Filter 

2.  We simulate Simulink LMS filter design, as shown 
in Fig. 9. As expected, the Sine wave block generates 
sinusoidal noise signal, adding with an audio input 
signal file to generate the total noise, and which will 
be filtered out via LMS filter block. Each signal is 
linked with an output scope to observe output 
waveforms. 
 

 
 

Fig. 9. The top signal represents the audio input (From 
Workspace). The middle signal represents the signal 
plus noise. For the bottom signal  is the filtered signal 
using the  LMS system to remove noise, showing the 
efficacy of the LMS filter.  

3. After Simulink Simulation is successfully run, the 
LMS filter block will be used for Register Transfer 
level Design, by converteing it to an Intellectual 
Property (IP) Core using HDL Coder Support. As 
mention earlier, the HDL code optimization will give 
the option of choosing the desired FPGA device so 
that it can provide specified control during the 
implementation, implementing data paths, controlling 
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the HDL architecture, and generating hardware 
resource utilization. This platform, as shown in Fig. 
10 specifies target device for implementation using 
Xilinx Vivado synthesis tool. The next step describes 
how to target communication between IP blocks and 
processing units by applying AXI4-Lite interfaces.  

 

 
 
Fig. 10. ZedBoard HDL Workflow Advisor Input 
Parameters (Set Target) 

4. Another important point is to establish 
communication stream between each components and 
IP blocks in Evaluation boards. As mentioned earlier, 
the target interface uses AXI4-Lite as a point-to-point 
connection to transmit data, addresses, and hand-
shaking signals between master and slave clients. 
AXI4-Lite provides a link to support single data 
transfer per connection (no burst). All the signals 
𝑥𝑥(𝑘𝑘) , 𝑑𝑑(𝑘𝑘), and 𝑒𝑒(𝑘𝑘)  are assigned with AXI4-Lite 
interfaces, Port type, Data type, and Bit Range, as 
shown in Fig. 11. 

Fig. 11. Target Platform Interface AXI4-Lite for x(k), 
d(k), and e(k), as well as with Port type, Data Type, and 
Bit Range. 

 
The final IP Core of LMS Filter is transformed into a 

single Core block that is able to implement into Vivado 
Synthesis environment, as shown in Fig. 12. The 
lms_pcore (LMS Filter IP Core) block contains all 
configurable settings that are set up on previous steps, 
including AXI4-Lite Interfaces. The next step describes 
how this block will be imported into Vivado Synthesis 
Design environment.  

 
Fig. 12. An Intellectual Property (IP) Core is generated 
configured with AXI4-Lite Interface 
 
5. The IP Core of LMS Filter (lms_pcore) is eventually 

imported into Vivado Synthesis Design environment, 
as shown in Fig. 13. Then the LMS Core will go 
through the process of Package IP. This step allows 
packaging HDL Coder generated IP blocks in IP 
Package for use in Vivado IP Integrated designs.  

Fig. 13. The complete IP Core design of LMS system 
 

The whole IP block design involves multi different 
IPs, all are connected with AXI4-Lite interfaces. The 
complete design of LMS is shown in figure below. In 
this schematic, nine IP Core blocks are presented: lms 
IP, AXI Interconnect IP, Processor System Reset IP, 
LED Controller IP, ZYNQ Processing System IP, Zed 
Audio IP, NCO (Numerical Controlled Oscillator) IP, 
AXI_GPIO_0 IP,   AXI_GPIO_1 IP. A description of 
each IP Core block is described below. 

 
LMS IP: contains the design and algorithm of LMS 
Filter. 
AXI Interconnect IP: contains the configuration of 
AXI4-Lite interfaces. 
Processor System Reset IP: contains the reset function of 
Zynq Board. 
LED Controller IP: contains the functionality of LEDs. 
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ZYNQ Processing System IP: contains the logic of Zynq 
Processing system. 
Zed Audio IP: contains the driver of Zedboard Audio 
map. 
Numerical Controlled Oscillator (NCO) IP: contains a 
digital signal generator which produces a clocked 
synchronous, discrete-time, and discrete-valued 
representation of a waveform, i.e. sine waveform. 
AXI_GPIO_0 IP, and AXI_GPIO_1 IP: connect to 
buttons and switches. 

The next step is synthesis, implementation, and 
export of the complete design into the hardware. 

 
6. After the IP block design is complete, it is 

synthesized, implemented to verify the design 
requirement, and exported to hardware.  

      
7. The Xilinx software development kit is used to create 

an integrated design environment for various 
embedded applications by applying all drivers, and 
C++ files needed to let IP Core design operate and 
debug. All C++ files and drivers after imported in 
SDK later will be debugged via System Debugger.  

 
8. After the SDK part is finished, System Hardware 

Debugger is run to debug all necessary files into 
hardware board, as shown in Fig. 14. This step 
includes connecting Zynq board with computer for 
feeding audio in; and speaker will be connected at 
port out. The board is connected with computer by 
JART port and PROG USB port. Putty is used as 
machine to machine communication tool to 
communicate between computer and Zynq board to 
give operation command.  

 

 
 
         Fig. 14. The overview of hardware implementation 

 

Sinusoidal noise is added to audio input by switching 
a switch on the Zed board. Each switch contains a 
different numerical step size, and an adding of switch at 
same time will add the higher amplitude noise with 
higher pitch. Button is used to apply filter algorithm to 
filter out total noise. The Filter operation is given 
through Putty Serial Communication with Zed’s USB 
COM port as shown in the Fig. 15. 
 

 
 

Fig. 15. Putty display of LMS operation in noise-adding 
audio signal 
 

5 Conclusions 
In this paper an adaptive filter system was successfully 
designed, and deployed with software/hardware co-
design for FPGA based systems. The adaptive filter 
system was analyzed using the MATLAB/Simulink 
model, and it later was automatically converted from 
floating point to fixed point for an Intellectual Property 
Core. This IP Core was placed in Vivado Synthesis 
Design for synthesis and implementation. Finally, the 
debugger was run before the audio file was fed in 
Zedboard. The design method can be applied to any type 
of FPGA under the Zynq family as long as this design is 
supported by the DSP-HDL Tool Support. The LMS 
Filter was processed and implemented to the FPGA 
board since it is supported by HDL. Experimental results 
show that the proposed hardware implementation 
method has a high degree of noise cancellation 
performance. 
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