
Design and Implementation of FPGA Based LMS Self-Adjusting Adaptive
Filtering System for Audio Signal Processing

NIAN ZHANG, TAM LE, SASAN HAGHANI
Department of Electrical and Computer Engineering

University of the District of Columbia
4200 Connecticut Ave, NW, Washington, D.C.

USA
nzhang@udc.edu, tam.le@udc.edu, shaghani@udc.edu,

Abstract: - This paper presents the design and implementation of an adaptive filter using the state-of-the-art Xilinx
Vivado software/hardware co-design concepts and tools. A desired signal corrupted by the environment can often be
recovered by an adaptive noise canceller using the least mean squares (LMS) algorithm. The detailed structure of the
adaptive noise cancellation system is illustrated. The adaptive parameters of the least-mean-square based adaptive
filter system are obtained using the MATLAB/Simulink model. RTL design is generated by converting LMS design
in Simulink to an Intellectual Property (IP) Core using HDL Coder Support. A complete system of Filter based on
Zynq board target architecture is designed using Vivado Synthesis Design and VHDL target language. The IP Core is
adopted in Vivado Synthesis and implementation. Finally, the debugger is run before the audio file was fed in
Zedboard development board for test. Experimental results show that the proposed hardware implementation method
has a high degree of noise cancellation performance.

Key-Words: - FPGA, Software/hardware implementation, Least mean square, Adaptive filters, Adaptive noise
cancellation, Vivado

1 Introduction
In the last decades, adaptive filter design has been a very
active area of research and innovative FPGA
implementations [1][2]. Adaptive filters are neural
network based filters that can self-adjust its coefficients
based on some optimizing algorithms. Adaptive filters
have numerous important real-world applications in a
wide range of signal processing, control, and
communications fields including: 1) signal detection; 2)
echo cancellation; 3) noise cancellation and/or
suppression; 3) channel equalization; 4) system
identification and inverse modeling of unknown systems;
5) forward and backward predictions and adaptive
tracking; and 6) spectral analysis.

Among these applications, the FPGA hardware
implementations are extremely important whenever real-
time parallel processing is needed [3]. State-of-the-Art
VLSI fabrication technology has made the field-
programmable gate arrays (FPGA) the platform of
hardware implementations, especially when timing
requirement is very strict. Such hardware
implementations can be realized using hardware
description languages such as VHDL or Verilog.

Modern FPGA chip design contains numerous resources
that are essential for digital signal processing
applications such as embedded multipliers, multiply-
accumulate units, soft and hard processor cores, and
embedded memory blocks [4]. The powerful integration
of available hybrid software and hardware co-design and
synthesis packages, advanced FPGA boards, Intellectual
property (IP) designs, and tools that allow seamless
integration between these software and hardware design
packages has made FPGA software/hardware co-design
a methodology of choice for many real-time applications.
Therefore, it is imperative to design and implement a
self-adjusting noise cancellation system based on the
Vivado software and FPGA co-design.

The rest of the paper is organized as follows. In
Section 2, the problem formulation and the neural
network model are discussed where an overview of the
least mean square (LMS) algorithm is given and the
implementation of the design in the FPGA Zynq
evaluation kit is described. In Section 3, the details of
the software/hardware codesign are discussed in detail.
Experimental results are given in Section 4. Finally, the
paper is concluded in Section 5.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 256 Volume 13, 2017

2 Different Neural Network Models for
Adaptive Noise Cancellation Problem
The most commonly-used algorithm to design an
adaptive filter is the least mean square (LMS) algorithm,
originally developed by Widrow and Hoff [5]. The LMS
algorithm is based on the principle of the steepest
descent algorithm with minimum mean square error. The
most important benefit of the LMS algorithm is that it
does not require exact measurements of the gradient
vector, nor does it require matrix inversion. The LMS
algorithm is used to solve the Wiener-Hoff equation by
searching for the optimal coefficients’ weights for an
adaptive filter. Another main advantage of the LMS
algorithm is its computational simplicity, ease of
implementation, and unbiased convergence. A block
diagram of an adaptive noise cancellation system is
shown in Fig. 1.

Fig. 1. Block diagram of a typical adaptive noise

cancellation system

The vector 𝑋𝑋(𝑘𝑘) denotes an input vector with time

delay and 𝑥𝑥(𝑘𝑘) is the input value at time 𝑘𝑘, i.e.:
𝑋𝑋(𝑘𝑘) = [𝑥𝑥(𝑘𝑘) 𝑥𝑥(𝑘𝑘 − 1) … 𝑥𝑥(𝑘𝑘 − 𝑁𝑁 + 1)]𝑇𝑇 (1)

Where []𝑇𝑇 denotes the transpose operation. The
vector 𝑊𝑊(𝑘𝑘) is used to represent the weights applied to
the filter coefficients at at time 𝑘𝑘 and is given as
𝑊𝑊(𝑘𝑘) = [𝑊𝑊0(𝑘𝑘) 𝑊𝑊1(𝑘𝑘) … 𝑊𝑊𝑁𝑁−1(𝑘𝑘)]𝑇𝑇 (2)

In Fig. 1, the step size parameter 𝜇𝜇 is the step size of

the adaptive filter , and𝑒𝑒(𝑘𝑘) is the error between the
desired response 𝑑𝑑(𝑘𝑘) and the output of the filter 𝑦𝑦(𝑘𝑘),
i.e., the filtered signal, at time 𝑘𝑘.

 The pseudo code of an LMS algorithm is described
in Table 1. The algorithm is adopted to update the
coefficients of a finite impulse response (FIR) filter.

Table 1 The pseudo code of an LMS algorithm

1. Calculate the output signal y(k) of the FIR filter. The
output of the filter represents an estimate of the desired
response. y(k) is the calculated as the convolution of the
weight vector and the input vector:
𝒚𝒚(𝒌𝒌) = ∑ 𝑾𝑾𝒏𝒏(𝒌𝒌)𝒙𝒙(𝒌𝒌 − 𝒏𝒏) = 𝑾𝑾𝑻𝑻(𝒌𝒌)𝒙𝒙(𝒌𝒌)𝑵𝑵−𝟏𝟏

𝒏𝒏=𝟎𝟎 (3)
2. The error signal e(k), is estimation error defined as the
difference between the estimated response and the

desired response.
𝒆𝒆(𝒌𝒌) = 𝒅𝒅(𝒌𝒌) − 𝒚𝒚(𝒌𝒌) (4)

3. The error signal and the input signal are applied to the
weight update algorithm to updates the filter
coefficients.

The LMS algorithm updates its coefficients through

the minimization of the mean of the instantaneous
squared error denoted by 𝐸𝐸[𝑒𝑒2(𝑘𝑘)] . While 𝑋𝑋(𝑘𝑘)
and 𝑊𝑊(𝑘𝑘) are assumed to be independent, the LMS
algorithm assumes that 𝑥𝑥(𝑘𝑘) and 𝑑𝑑(𝑘𝑘) are wide-sense
stationary ergodic processes, and therefore their means
and variances are constant. The iterative weight update
procedure of the LMS algorithm is given as:

𝑊𝑊(𝑘𝑘 + 1) = 𝑊𝑊(𝑘𝑘) + 2𝜇𝜇𝑒𝑒(𝑘𝑘)𝑋𝑋(𝑘𝑘) (5)
The selection of the step size parameter𝜇𝜇 plays an

important role in updating of the system coefficients and
thus can affect the system performance. While a
relatively small 𝜇𝜇 value could result in longer
convergence time to find an optimal solution, selecting a
larger 𝜇𝜇 value may lead to unstable convergence and an
output that may diverge. For the consideration of stable
behavior and convergence, the step size must be a small
positive value (𝜇𝜇 << 1) and meet the following criteria
0 < µ < 1

2∗𝑁𝑁∗𝑅𝑅
 (6)

where 𝑁𝑁 is the number of filter taps and 𝑅𝑅 is the input
signal covariance matrix defined as
𝑅𝑅 = 𝐸𝐸(𝑋𝑋(𝑛𝑛) ∗ 𝑋𝑋𝑇𝑇(𝑛𝑛)) (7)

3 FPGA Implementation
In this section, we will first introduce the Zynq
evaluation kit that we use to implement our design in
Section 3.1, and then we discuss the implementation of
an adaptive filter in detail in Section 3.2.

3.1 Zynq Evaluation Kit
The complete design will be implemented and exported
to work with FPGA Zyn Evaluation Kit [6]. The
software design using Simulink LMS Filter block is
converted to an Intellectual Property (IP) Core, which is
connected with a Zynq Processing system and
communicates with the target interface platform AXI4-
Lite. AXI stands for Advanced eXtensible Interface, and
the current version is AXI4. The AMBA standard was
originally developed by ARM for use in
microcontrollers [7]. AXI buses can be used flexibly,
and in the general sense are used to connect the
processor(s) and other IP blocks in an embedded system.

AXI4-Lite provides a simplified link supporting only
one data transfer per connection (no burst). It also is
memory-mapped, where an address and single data word

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 257 Volume 13, 2017

are transferred. It means data is then written to, or read
from, the specified address; in the case of AXI4 bursts,
the address specified is for the first data word to be
transferred, and the slave must then calculate the
addresses for the data words that follow [8]. The AXI4-
Lite is the Target Interface, which is defined as point-to-
point connection for passing data, addresses, and hand-
shaking signals between master and slave clients within
the system. The design flow for Zynq System on Chip
(SoC) is illustrated in Fig. 2.

Fig. 2. The design flow for Zynq System on Chip (SoC)

All Zynq devices have the same basic architecture,

and all of them contain, as the basis of the processing
system, a dual-core ARM Cortex-A9 processor, as
shown in Fig. 3. This is a ‘hard’ processor — it exists as
a dedicated and optimized silicon element on the device.

For comparison purposes, the alternative to a hard
processor is a ‘soft’ processor like the Xilinx
MicroBlaze, which is formed by combining elements of
the programmable logic fabric. The implementation of a
soft processor is therefore the equivalent of any other IP
block deployed in the logic fabric of an FPGA. In
general, the advantage of soft processors is that the
number and precise implementation of processor
instances is flexible.
 These two processing styles are ideally suited to the
PL and PS of Zynq, respectively. Zynq provides the

greatest benefit to applications requiring both of these
processing styles, particularly when implementation
would otherwise require the use of two discrete
processing chips Moreover, where the application
involves close cooperation between these two processing
elements, the consolidated Zynq architecture can permit
power savings and design simplifications. The low-
latency and high-bandwidth link between the PS and PL
is an advantage, and is particularly significant in systems
with fast real-time processing requirements and
feedback loops.

Fig. 3. The Zynq processing system

The powerful of Zynq ecosystem, together with IP
blocks, operating systems, and other software solutions
provides a distinct set of features and characteristics. It
is therefore useful to build on these observations, and to
explore and consider applications for which Zynq is
particularly well-suited, as shown in Fig. 4. The Zynq
architecture can be leveraged to meet the demands of
applications with significant requirements in terms of
both high performance computation, and sequential
processor intensive functionality.

Fig. 4. Embedded system application areas

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 258 Volume 13, 2017

3.2 FPGA Implementation
The design and implementation of an adaptive filter
involves multiple steps and processes before the design
is completely exported and launched on Hardware
(System debugger), as shown in Fig. 5a. Using both
Simulink and Vivado Synthesis Design are the final
option in Adaptive filter implementation due to the
support between two platforms.

Fig. 5a. Software\Hardware co-design of LMS adaptive
filter

A Software Development Kit (SDK) is launched to
import necessary drivers and C++ files used for
hardware implementation. Generally, the process
involves the following steps.

Step 1: Design Adaptive Filter LMS using Matlab
Simulink DSP Toolbox with HDL Support blocks. Filter
block has to be supported by HDL Coder that is able to
convert to IP Core (lms_pcore), which later will be
added into Vivado Synthesis Design Environment for
Register Transfer Level design.

Step 2: Give input samples and simulate the Simulink
design.

Step 3: Generate RTL design by converting LMS design
in Simulink to an Intellectual Property (IP) Core using
HDL Coder Support.

Step 4: Target platform interface AXI4-Lite for signal
𝑥𝑥(𝑘𝑘),𝑑𝑑(𝑘𝑘), d(k), and 𝑒𝑒(𝑘𝑘).

Step 5: Design a complete system of Filter based on
Zynq board target architecture using Vivado Synthesis
Design and VHDL target language. A complete design
of IPs core includes lms_pcore, switches and buttons IP
core, processing system IP core, and AXI Interconnect
altogether wired, synthesized, and implemented.

Step 6: Synthesis, implement, and export the complete
design into Hardware.

Step 7: Launch Software Development Kit (SDK) to
generate all drives, input C++ files, and input signal
needed.

Step 8: Run System Hardware Debugger to Zedboard,
and run test.

HDL Coder plays an important role in converting
LMS Filter from Simulink design to an IP Core in
Vivado Synthesis Design. HDL Coder is a built-in
MathWorks product which enables the synthesizable
HDL codes generation from MATLAB functions and
Simulink models [9]. It provides a workflow which
analyzes a MATLAB/Simulink model and then converts
the floating point signals to fixed point signals. This
benefits the users on the development of algorithms and
models without lower-level HDL code design. The HDL
code optimization will give the option of choosing the
desired FPGA device so that it can provide specified
control during the implementation, implementing data
paths, controlling the HDL architecture, and generating
hardware resource utilization. Once generated by HDL
Coder, the HDL code can be used to create an IP core, as
detailed In Fig 5b.

Fig. 5b. HDL Coder Flow

4 Experimental Results
We implemented the FPGA design of the adaptive noise
cancellation system based on the least mean square
(LMS) algorithm based on the steps described in Section
3.

1. This design required the latest Simulink library to be
properly installed. There exist many types of LMS
filters, as shown in Fig. 6. In order to fit our design,
the DSP System Toolbox HDL Support LMS Filter is

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 259 Volume 13, 2017

selected. Only this block will be later converted to an
IP for synthesis design.

Fig. 6. the LMS Block in Simulink Library

LMS Filter is configurable to fit our design, and we
assign signals 𝑥𝑥(𝑘𝑘), 𝑑𝑑(𝑘𝑘), and 𝑒𝑒(𝑘𝑘), to denote the input,
the desired signal and the error signal, respectively, as
shown in Fig. 7. In order for the HDL Coder to generate
HDL codes for the Simulink LMS model, the input type
must be a fixed-point number. Pair of DATA Type
Conversion blocks converts the corrupt audio signals and
the tonal noise signals to fixed-point signals. These
fixed-point signals are then provided to the LMS
subsystem. The error signal, e(k), along with the corrupt
audio and tonal noise input are transmitted to a scope for
visual inspection of the signal. Two blocks called To
Workspace make the LMS output and the corrupt audio
signals to be the MATLAB workspace variables for
audio playback.

Fig. 7. the LMS Subsystem with parameters chosen.
Adaptive Filter coefficients = 16 and step size = 0.13

This step size is then calculated following Eq. (6).
The selection of the step size parameter µ plays an
important role in updating of the system coefficients and
thus has a major impact on the performance of the LMS
algorithm. The smaller the µ, the longer it takes for the

adaptive filter to converge to the optimal solution. The
complete design in Simulink is shown in Fig. 8.

Fig. 8. Complete Simulink design of the LMS Filter

2. We simulate Simulink LMS filter design, as shown
in Fig. 9. As expected, the Sine wave block generates
sinusoidal noise signal, adding with an audio input
signal file to generate the total noise, and which will
be filtered out via LMS filter block. Each signal is
linked with an output scope to observe output
waveforms.

Fig. 9. The top signal represents the audio input (From
Workspace). The middle signal represents the signal
plus noise. For the bottom signal is the filtered signal
using the LMS system to remove noise, showing the
efficacy of the LMS filter.

3. After Simulink Simulation is successfully run, the
LMS filter block will be used for Register Transfer
level Design, by converteing it to an Intellectual
Property (IP) Core using HDL Coder Support. As
mention earlier, the HDL code optimization will give
the option of choosing the desired FPGA device so
that it can provide specified control during the
implementation, implementing data paths, controlling

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 260 Volume 13, 2017

the HDL architecture, and generating hardware
resource utilization. This platform, as shown in Fig.
10 specifies target device for implementation using
Xilinx Vivado synthesis tool. The next step describes
how to target communication between IP blocks and
processing units by applying AXI4-Lite interfaces.

Fig. 10. ZedBoard HDL Workflow Advisor Input
Parameters (Set Target)

4. Another important point is to establish
communication stream between each components and
IP blocks in Evaluation boards. As mentioned earlier,
the target interface uses AXI4-Lite as a point-to-point
connection to transmit data, addresses, and hand-
shaking signals between master and slave clients.
AXI4-Lite provides a link to support single data
transfer per connection (no burst). All the signals
𝑥𝑥(𝑘𝑘) , 𝑑𝑑(𝑘𝑘), and 𝑒𝑒(𝑘𝑘) are assigned with AXI4-Lite
interfaces, Port type, Data type, and Bit Range, as
shown in Fig. 11.

Fig. 11. Target Platform Interface AXI4-Lite for x(k),
d(k), and e(k), as well as with Port type, Data Type, and
Bit Range.

The final IP Core of LMS Filter is transformed into a

single Core block that is able to implement into Vivado
Synthesis environment, as shown in Fig. 12. The
lms_pcore (LMS Filter IP Core) block contains all
configurable settings that are set up on previous steps,
including AXI4-Lite Interfaces. The next step describes
how this block will be imported into Vivado Synthesis
Design environment.

Fig. 12. An Intellectual Property (IP) Core is generated
configured with AXI4-Lite Interface

5. The IP Core of LMS Filter (lms_pcore) is eventually

imported into Vivado Synthesis Design environment,
as shown in Fig. 13. Then the LMS Core will go
through the process of Package IP. This step allows
packaging HDL Coder generated IP blocks in IP
Package for use in Vivado IP Integrated designs.

Fig. 13. The complete IP Core design of LMS system

The whole IP block design involves multi different
IPs, all are connected with AXI4-Lite interfaces. The
complete design of LMS is shown in figure below. In
this schematic, nine IP Core blocks are presented: lms
IP, AXI Interconnect IP, Processor System Reset IP,
LED Controller IP, ZYNQ Processing System IP, Zed
Audio IP, NCO (Numerical Controlled Oscillator) IP,
AXI_GPIO_0 IP, AXI_GPIO_1 IP. A description of
each IP Core block is described below.

LMS IP: contains the design and algorithm of LMS
Filter.
AXI Interconnect IP: contains the configuration of
AXI4-Lite interfaces.
Processor System Reset IP: contains the reset function of
Zynq Board.
LED Controller IP: contains the functionality of LEDs.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 261 Volume 13, 2017

ZYNQ Processing System IP: contains the logic of Zynq
Processing system.
Zed Audio IP: contains the driver of Zedboard Audio
map.
Numerical Controlled Oscillator (NCO) IP: contains a
digital signal generator which produces a clocked
synchronous, discrete-time, and discrete-valued
representation of a waveform, i.e. sine waveform.
AXI_GPIO_0 IP, and AXI_GPIO_1 IP: connect to
buttons and switches.

The next step is synthesis, implementation, and
export of the complete design into the hardware.

6. After the IP block design is complete, it is

synthesized, implemented to verify the design
requirement, and exported to hardware.

7. The Xilinx software development kit is used to create

an integrated design environment for various
embedded applications by applying all drivers, and
C++ files needed to let IP Core design operate and
debug. All C++ files and drivers after imported in
SDK later will be debugged via System Debugger.

8. After the SDK part is finished, System Hardware

Debugger is run to debug all necessary files into
hardware board, as shown in Fig. 14. This step
includes connecting Zynq board with computer for
feeding audio in; and speaker will be connected at
port out. The board is connected with computer by
JART port and PROG USB port. Putty is used as
machine to machine communication tool to
communicate between computer and Zynq board to
give operation command.

 Fig. 14. The overview of hardware implementation

Sinusoidal noise is added to audio input by switching
a switch on the Zed board. Each switch contains a
different numerical step size, and an adding of switch at
same time will add the higher amplitude noise with
higher pitch. Button is used to apply filter algorithm to
filter out total noise. The Filter operation is given
through Putty Serial Communication with Zed’s USB
COM port as shown in the Fig. 15.

Fig. 15. Putty display of LMS operation in noise-adding
audio signal

5 Conclusions
In this paper an adaptive filter system was successfully
designed, and deployed with software/hardware co-
design for FPGA based systems. The adaptive filter
system was analyzed using the MATLAB/Simulink
model, and it later was automatically converted from
floating point to fixed point for an Intellectual Property
Core. This IP Core was placed in Vivado Synthesis
Design for synthesis and implementation. Finally, the
debugger was run before the audio file was fed in
Zedboard. The design method can be applied to any type
of FPGA under the Zynq family as long as this design is
supported by the DSP-HDL Tool Support. The LMS
Filter was processed and implemented to the FPGA
board since it is supported by HDL. Experimental results
show that the proposed hardware implementation
method has a high degree of noise cancellation
performance.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation (NSF) grants: HRD #1505509 and HRD
#1435947.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 262 Volume 13, 2017

References:
[1] Wagdy H. Mahmoud and Nian Zhang,

Software/Hardware Implementation of an Adaptive
Noise Cancellation System, 120th ASEE Annual
Conference & Exposition, Atlanta, GA, June 23-26,
2013.

[2] Nian Zhang, Investigation of Fault-Tolerant
Adaptive Filtering for Noisy ECG Signals, 2007
IEEE Symposium on Computational Intelligence in
Image and Signal Processing (CIISP), Honolulu, HI,
pp. 177-182, April 1-5, 2007.

[3] M. I. Troparevsky, C. E. D’Attellis, On the
convergence of the LMS algorithm in adaptive
filtering, Signal Processing Vol. 84, pp. 1985-1988,
October 2004.

[4] Ahmed Elhossini, Shawki Areibi, Robert Dony, An
FPGA Implementation of the LMS Adaptive Filter

for Audio Processing, Proceedings of IEEE
International Conference on reconfigurable
Computing and FPGS’s (ReConFig 2006), pp. 1-8,
2006.

[5] A. Rosado-Muñoz, M. Bataller-Mompe, E. Soria-
Olivas, C. Scarante, J. F. Guerrero-Martínez, FPGA
Implementation of an Adaptive Filter Robust to
Impulsive Noise: Two Approaches, IEEE
Transactions on Industrial Electronics, Vol. 58, No.
3, pp. 860-870, March 2011.

[6] http://www.zynqbook.com/
[7] https://www.arm.com/products/system-ip/amba-

specifications
[8] https://www.xilinx.com/support/answers/66421.html
[9] https://www.mathworks.com/help/hdlcoder/example

s/basic-hdl-code-generation-with-the-workflow
advisor.html

WSEAS TRANSACTIONS on SIGNAL PROCESSING Nian Zhang, Tam Le, Sasan Haghani

E-ISSN: 2224-3488 263 Volume 13, 2017

http://www.zynqbook.com/
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://www.xilinx.com/support/answers/66421.html
https://www.mathworks.com/help/hdlcoder/examples/basic-hdl-code-generation-with-the-workflow-advisor.html
https://www.mathworks.com/help/hdlcoder/examples/basic-hdl-code-generation-with-the-workflow-advisor.html

